Skip to main content

High energy neutrinos may come from black holes ripping apart stars

 When a star gets too close to a black hole, sparks fly. And, potentially, so do subatomic particles called neutrinos.

A dramatic light show results when a supermassive black hole rips apart a wayward star. Now, for the second time,  a high energy neutrinos has  been spotted  that may have come from one of these “tidal disruption events,” researchers report in a study accepted in Physical Review Letters.

black hole


These lightweight particles, which have no electric charge, careen across the cosmos and can be detected upon their arrival at Earth. The origins of such zippy neutrinos are a big mystery in physics. To create them, conditions must be just right to drastically accelerate charged particles, which would then produce neutrinos. Scientists have begun lining up likely candidates for cosmic particle accelerators. In 2020, researchers reported the first  neutrino linked to a tidal disruption event (SN: 5/26/20). Other neutrinos have been tied to active galactic nuclei , bright regions at the centers of some galaxies (SN: 7/12/18).

Discovered in 2019, the tidal disruption event reported in the new study stood out. “It was extraordinarily bright; it’s really one of the brightest transients ever seen,” says astroparticle physicist Marek Kowalski of Deutsches Elektronen-Synchrotron, or DESY, in Zeuthen, Germany.

Transients are short-lived flares in the sky, such as tidal disruption events and exploding stars called supernovas. Further observations of the brilliant outburst revealed that it shone in infrared, X-rays and other wavelengths of light.

super black hole


Roughly a year after the flare’s discovery, the Antarctic neutrino observatory IceCube spotted a high-energy neutrino. By tracing the particle’s path backward, researchers determined that the neutrino came from the flare’s vicinity.

The matchup between the two events could be a coincidence. But when combined with the previous neutrino that was tied to a tidal disruption event, the case gets stronger. The probability of finding two such associations by chance is only about 0.034 percent, the researchers say.

It’s still not clear how tidal disruption events would produce high-energy neutrinos. In one proposed scenario, a jet of particles flung away from the black hole could accelerate protons, which could interact with surrounding radiation to produce the speedy neutrinos.

‘We need more data … in order to say that these are real neutrino sources or not,” says astrophysicist Kohta Murase of Penn State University, a coauthor of the new study. If the link between the neutrinos and tidal disruption events is real, he’s optimistic that researchers won’t have to wait too long. “If this is the case, we will see more.”

But scientists don’t all agree that the flare was a tidal disruption event. Instead, it could have been an  especially bright type of supernova , astrophysicist Irene Tamborra and colleagues suggest in the April 20 Astrophysical Journal.

super nova


In such a supernova, it’s clear how energetic neutrinos could be produced, says Tamborra, of the Niels Bohr Institute at the University of Copenhagen. Protons accelerated by the supernova’s shock wave could collide with protons in the medium that surrounds the star, producing other particles that could decay to make neutrinos.

It’s only recently that observations of high-energy neutrinos and transients have improved enough to enable scientists to find potential links between the two. “It’s exciting,” Tamborra says. But as the debate over the newly detected neutrino’s origin shows, “at the same time, it’s uncovering many things that we don’t know.”

Comments

Popular posts from this blog

what is secret of 369

  The number 3 serves as the only number that equals the sum  of  all preceding numbers (0 + 1 + 2 = 3). Also, when 3 is added to itself, the smallest perfect number ensues (6). And when 3 is squared, the result is the number that completes the single-digit numbers in the decimal system, better known as the number 9 why 369 is universe of key ? Nikola Tesla was obsessed with numbers, but especially 3, 6 and 9. He wanted the world to know the significance of the number 3 6 9, he claimed that these were extremely important numbers, but the question is why? What was that Nikola Tesla wanted the world to understand? How it became Nikola Tesla 3 6 9 theory? To understand that, we must first know about Mathematics. Why it is so different yet the same anywhere in the universe. Maths was and has been the most valued subject of all the time and the most powerful too. Two plus two will always be four everywhere in the universe. Possibly Nikola Tesla knew the power of the numbers 3 ...

Kardashev scale

  The   Kardashev scale   is a method of measuring a  civilization ' s level of technological  advancement based on the amount of energy  it is able to use. The measure was proposed by   Soviet    astronomer   Nikolai    Kardashev    in 1964. The scale is hypothetical , and regards energy consumption on a cosmic  scale. Various extensions of the scale have since been proposed, including a wider range of power levels (types 0, IV through VI) and the use of metrics other than pure power. Categories  The Kardashev scale has three designated categories, these are: A  Type I civilization , also called a planetary civilization , can use and store all of the energy available on its planet.  A  Type II civilization , also called a stellar    civilization , can use and control energy at the scale of its planetary system. A  Type III ...

Anthropic principle

  The   anthropic principle   is the principle that there is a restrictive lower bound on how statistically probable our observations of the universe are, given that we could only exist in the particular type of universe capable of developing and sustaining sentient life.   Proponents of the anthropic principle argue that it explains why this universe has the  age  and the  fundamental physical constants    necessary to accommodate conscious life, since if either had been different, we would not have been around to make observations. Anthropic reasoning is often used to deal with the notion that the universe seems to be  fine tuned . There are many different formulations of the anthropic principle. Philosopher Nick Bostrom  counts them at thirty, but the underlying principles can be divided into "weak" and "strong" forms, depending on the types of cosmological claims they entail. The  weak anthropic principle  ( ...