Skip to main content

ghost particles in large hardon collider

 Ghostly neutrinos have never been seen inside a particle accelerator, until now.

Physicists have detected "ghost particles" called neutrinos inside an atom smasher for the first time. 

ghost particles


The tiny particles, known as neutrinos , were spotted during the test run of a new detector at the Large Hadron Collider (LHC) — the world's largest particle accelerator, located at CERN near Geneva, Switzerland. 

The landmark discovery, made by CERN's Forward Search Experiment (FASER) collaboration and presented in a Nov. 24 paper in the journal Physical Review D, is not just the first time that neutrinos have been seen inside the LHC, but it's also the first time they've been found inside any particle accelerator. The breakthrough opens up a completely new window through which scientists can investigate the subatomic world. 

"Prior to this project, no sign of neutrinos has ever been seen at a particle collider," study co-author Jonathan Feng, a physics professor at the University of California, Irvine and co-leader of the FASER collaboration, said in a statement . "This significant breakthrough is a step toward developing a deeper understanding of these elusive particles and the role they play in the universe."

Every second, about 100 billion neutrinos pass through each square centimeter of your body. The tiny particles are everywhere — they're produced in the nuclear fire  of stars, in enormous supernova explosions, by cosmic rays and radioactive decay, and in particle accelerators and nuclear reactors on Earth .

particles


But despite their ubiquity, the particles remain hard to catch. Because neutrinos have no electrical charge and almost zero mass, they barely interact with other types of matter. True to their ghostly nickname, neutrinos view the universe's regular matter as incorporeal, and they fly through it at close to the speed of light .

Just because they're hard to catch doesn't mean that neutrinos can't be caught, however. Some of the most famous neutrino detection experiments — such as Japan's Super-Kamiokande detector, Fermilab's MiniBooNE, and the Antarctic IceCube detector — have all detected solar-generated neutrinos indirectly through an effect called Cherenkov radiation. Just as a plane traveling faster than

the speed of sound creates a sonic boom, a particle traveling through a light-slowing medium (like water) faster than light is able to creates a faint blue glow in its wake. By looking for this glow, scientists are able to spot the trails of particle byproducts created after neutrinos strike an atomic nucleus dead-on.

hardon collider


But while experiments like these are great for detecting the signatures of neutrinos that stream through Earth from the sun, they still leave scientists with very little insight into the types of high-energy neutrinos produced when particles smash into each other inside particle accelerators. To find these homegrown neutrinos, the scientists at the FASER collaboration created a new detector called the FASERnu.

The FASERnu is like a particle-detecting s'more, made up of dense metal plates of lead and tungsten  that sandwich multiple layers of light-detecting gunk called emulsion. First, the neutrinos crash into the atomic nuclei in the dense metal plates to produce their particle byproducts. Then, according to Feng, the emulsion layers work in a similar way to old-fashioned photographic film, reacting with the neutrino byproducts to imprint the traced outlines of the particles as they zip through them. 

By "developing" the emulsion and analyzing the particle trails left behind, the physicists figured out that some of the marks were produced by neutrinos; they could even determine which of the three particle "flavors" of neutrino — tau, muon or electron — they had detected. This confirmed that they had not only picked the right spot inside the gigantic 17-mile (27 kilometers) ring to detect neutrinos, but that their new detector was actually able to see them.

Now that they've struck upon a winning detector, the physicists have started building an even bigger version of it, which they say will not only be a lot more sensitive to spotting the elusive particles, but will also be able to detect the difference between neutrinos and their antimatter opposites, antineutrinos. When the LHC powers up again in 2022, they plan to use the detector to study the neutrinos produced by the particle accelerator in-depth.

"Given the power of our new detector and its prime location at CERN, we expect to be able to record more than 10,000 neutrino interactions in the next run of the LHC, beginning in 2022," Casper said. "We will detect the highest-energy neutrinos that have ever been produced from a human-made source."

Neutrinos aren't the FASER scientists' only quarry, either. The team is also working on an experiment to detect hypothetical "dark photons," which physicists think could be intimately connected to dark matter , the mysterious, non-luminous substance believed to account for roughly 85% of the matter in the universe.

Comments

Popular posts from this blog

what is secret of 369

  The number 3 serves as the only number that equals the sum  of  all preceding numbers (0 + 1 + 2 = 3). Also, when 3 is added to itself, the smallest perfect number ensues (6). And when 3 is squared, the result is the number that completes the single-digit numbers in the decimal system, better known as the number 9 why 369 is universe of key ? Nikola Tesla was obsessed with numbers, but especially 3, 6 and 9. He wanted the world to know the significance of the number 3 6 9, he claimed that these were extremely important numbers, but the question is why? What was that Nikola Tesla wanted the world to understand? How it became Nikola Tesla 3 6 9 theory? To understand that, we must first know about Mathematics. Why it is so different yet the same anywhere in the universe. Maths was and has been the most valued subject of all the time and the most powerful too. Two plus two will always be four everywhere in the universe. Possibly Nikola Tesla knew the power of the numbers 3 ...

A.I

A.I. - we all know that the artificial intelligence come soon in the future , it is very useful for human life it's make human life so easier. Many scientists trying to make advance artificial intelligence like Jarvis ,  it's a fictional A.I. in iron man series it's very advanced A.I. which helps iron man in many wars and it also gives him all information ..... but many genius also said that if A.I. become so advance so it also harmful for human life ..... Elon Musk - He said that maybe A.I. will destroy human life that's why his company neuralink developing ultra high Bandwidth Brain this machine interference To connect Humans And computers.... but today's A.I. is not so advance.

Anthropic principle

  The   anthropic principle   is the principle that there is a restrictive lower bound on how statistically probable our observations of the universe are, given that we could only exist in the particular type of universe capable of developing and sustaining sentient life.   Proponents of the anthropic principle argue that it explains why this universe has the  age  and the  fundamental physical constants    necessary to accommodate conscious life, since if either had been different, we would not have been around to make observations. Anthropic reasoning is often used to deal with the notion that the universe seems to be  fine tuned . There are many different formulations of the anthropic principle. Philosopher Nick Bostrom  counts them at thirty, but the underlying principles can be divided into "weak" and "strong" forms, depending on the types of cosmological claims they entail. The  weak anthropic principle  ( ...