Skip to main content

china artificial sun

 China's "artificial sun" has set a new world record after superheating a loop of plasma to temperatures five times hotter than the sun for more than 17 minutes, state media reported. 

sun


The EAST (Experimental Advanced Superconducting Tokamak) nuclear fusion reactor maintained a temperature of 158 million degrees Fahrenheit (70 million degrees Celsius) for 1,056 seconds, according to the Xinhua new agency . The achievement brings scientists a small yet significant step closer to the creation of a source of near-unlimited clean energy.

The Chinese experimental nuclear fusion reactor smashed the previous record, set by France's Tore Supra tokamak in 2003, where plasma in a coiling loop remained at similar temperatures for 390 seconds. EAST had previously set another record in May 2021 by running for 101 seconds at an unprecedented 216 million F (120 million C). The core of the actual sun, by contrast, reaches temperatures of around 27 million F (15 million C).

"The recent operation lays a solid scientific and experimental foundation towards the running of a fusion reactor," experiment leader Gong Xianzu, a researcher at the Institute of Plasma Physics of the Chinese Academy of Sciences, said in a statement . 

fusion reactor


Scientists have been trying to harness the power of nuclear fusion — the process by which stars burn — for more than 70 years. By fusing hydrogen  atoms to make helium under extremely high pressures and temperatures, so-called main-sequence stars are able to convert matter into light and heat, generating enormous amounts of energy without producing greenhouse gases or long-lasting radioactive waste.

But replicating the conditions found inside the hearts of stars is no simple task. The most common design for fusion reactors, the tokamak, works by superheating plasma (one of the four states of matter , consisting of positive ions and negatively-charged free electrons) before trapping it inside a donut-shaped reactor chamber with powerful magnetic fields .

Keeping the turbulent and superheated coils of plasma in place long enough for nuclear fusion to happen, however, has been a painstaking process. Soviet scientist Natan Yavlinsky designed the first tokamak in 1958, but no one has ever managed to create an experimental reactor that is able to put out more energy than it takes in.

One of the main stumbling blocks has been how to handle a plasma that's hot enough to fuse. Fusion reactors require very high temperatures — many times hotter than the sun — because they have to operate at much lower pressures than where fusion naturally takes place inside the cores of stars. Cooking plasma to temperatures hotter than the sun is the relatively easy part, but finding a way to corral it so that it doesn’t burn through the reactor walls (either with lasers or magnetic fields) without also ruining the fusion process is technically tricky.

EAST is expected to cost China more than $1 trillion by the time the experiment finishes running in June, and it is being used to test out technologies for an even bigger fusion project — the International Thermonuclear Experimental Reactor (ITER) — that’s currently being built in Marseille, France.

Set to be the world's largest nuclear reactor and the product of collaboration between 35 countries — including every state in the European Union, the U.K., China, India and the U.S. — ITER contains the world's most powerful magnet, making it capable of producing a magnetic field 280,000 times as strong as the one around the Earth . The fusion reactor is expected to come online in 2025, and it will provide scientists with even more insights into the practicalities of harnessing star power on Earth.

China is also pursuing more of its own programs to develop nuclear fusion power — it is conducting  inertial confinement fusion of experiment  and is planning to complete a  new tokamak by early 2030s.

Elsewhere, the first viable fusion reactor could be completed in the USA  as soon as 2025, and a British company hopes to be commercially generating electricity from fusion  by 2030.

Comments

Popular posts from this blog

what is secret of 369

  The number 3 serves as the only number that equals the sum  of  all preceding numbers (0 + 1 + 2 = 3). Also, when 3 is added to itself, the smallest perfect number ensues (6). And when 3 is squared, the result is the number that completes the single-digit numbers in the decimal system, better known as the number 9 why 369 is universe of key ? Nikola Tesla was obsessed with numbers, but especially 3, 6 and 9. He wanted the world to know the significance of the number 3 6 9, he claimed that these were extremely important numbers, but the question is why? What was that Nikola Tesla wanted the world to understand? How it became Nikola Tesla 3 6 9 theory? To understand that, we must first know about Mathematics. Why it is so different yet the same anywhere in the universe. Maths was and has been the most valued subject of all the time and the most powerful too. Two plus two will always be four everywhere in the universe. Possibly Nikola Tesla knew the power of the numbers 3 ...

Anthropic principle

  The   anthropic principle   is the principle that there is a restrictive lower bound on how statistically probable our observations of the universe are, given that we could only exist in the particular type of universe capable of developing and sustaining sentient life.   Proponents of the anthropic principle argue that it explains why this universe has the  age  and the  fundamental physical constants    necessary to accommodate conscious life, since if either had been different, we would not have been around to make observations. Anthropic reasoning is often used to deal with the notion that the universe seems to be  fine tuned . There are many different formulations of the anthropic principle. Philosopher Nick Bostrom  counts them at thirty, but the underlying principles can be divided into "weak" and "strong" forms, depending on the types of cosmological claims they entail. The  weak anthropic principle  ( ...

Kardashev scale

  The   Kardashev scale   is a method of measuring a  civilization ' s level of technological  advancement based on the amount of energy  it is able to use. The measure was proposed by   Soviet    astronomer   Nikolai    Kardashev    in 1964. The scale is hypothetical , and regards energy consumption on a cosmic  scale. Various extensions of the scale have since been proposed, including a wider range of power levels (types 0, IV through VI) and the use of metrics other than pure power. Categories  The Kardashev scale has three designated categories, these are: A  Type I civilization , also called a planetary civilization , can use and store all of the energy available on its planet.  A  Type II civilization , also called a stellar    civilization , can use and control energy at the scale of its planetary system. A  Type III ...