Skip to main content

Parker Solar Probe

 

The Parker Solar Probe (abbreviated PSP; previously Solar ProbeSolar Probe Plus or Solar Probe+) is a Nasa space probe  launched in 2018 with the mission of making observations of the outer corona  of the Sun. It will approach to within 9.86 solar radii (6.9 million km or 4.3 million miles) from the center of the Sun, and by 2025 will travel, at closest approach, as fast as 690,000 km/h (430,000 mph), or 0.064% the speed of light . 

The project was announced in the fiscal 2009 budget year. The cost of the project is US$1.5 billion. John Hopkins University applied physics laboratory  designed and built the spacecraft, which was launched on 12 August 2018.It became the first NASA spacecraft named after a living person, honoring nonagenarian  physicist Eugene Newman parker , professor emeritus at the University of Chicago

parker


A memory card containing the names of over 1.1 million people was mounted on a plaque and installed below the spacecraft's high-gain antenna on 18 May 2018. The card also contains photos of Parker and a copy of his 1958 scientific paper predicting important aspects of solar physics .

On 29 October 2018, at about 18:04 UTC, the spacecraft became the closest ever artificial object to the Sun. The previous record, 42.73 million kilometres (26.55 million miles) from the Sun's surface, was set by the Helios 2 spacecraft in April 1976.  As of its perihelion  21 November 2021, the Parker Solar Probe's closest approach is 8.5 million kilometres (5.3 million miles).This will be surpassed after each of the two remaining flybys of venus 


For the first time in history, a spacecraft has touched the Sun. NASA’s parker solar probe  has now flown through the Sun’s upper atmosphere – the corona – and sampled particles and magnetic fields there. 

The new milestone marks one major step for Parker Solar Probe and one giant leap for solar science. Just as landing on the Moon allowed scientists to understand how it was formed, touching the very stuff the Sun is made of will help scientists uncover critical information about our closest star and its influence on the solar system. 

"Parker Solar Probe “touching the Sun” is a monumental moment for solar science and a truly remarkable feat," said Thomas Zurbuchen, the associate administrator for the Science Mission Directorate at NASA Headquarters in Washington. "Not only does this milestone provide us with deeper insights into our Sun's evolution and its impacts on our solar system, but everything we learn about our own star also teaches us more about stars in the rest of the universe.”

parker


As it circles closer to the solar surface, Parker is making new discoveries that other spacecraft were too far away to see, including from within the solar wind – the flow of particles from the Sun that can influence us at Earth. In 2019, Parker discovered that magnetic zig-zag structures in the solar wind, called switchbacks, are plentiful close to the Sun. But how and where they form remained a mystery. Halving the distance to the Sun since then, Parker Solar Probe has now passed close enough to identify one place where they originate: the solar surface.

The first passage through the corona – and the promise of more flybys to come – will continue to provide data on phenomena that are impossible to study from afar.

“Flying so close to the Sun, Parker Solar Probe now senses conditions in the magnetically dominated layer of the solar atmosphere – the corona – that we never could before,” said Nour Raouafi, the Parker project scientist at the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland. “We see evidence of being in the corona in magnetic field data, solar wind data, and visually in images. We can actually see the spacecraft flying through coronal structures that can be observed during a total solar eclipse.”

Closer Than Ever Before 

Parker Solar Probe launched in 2018 to explore the mysteries of the Sun by traveling closer to it than any spacecraft before. Three years after launch and decades after first conception, Parker has finally arrived.

Unlike Earth, the Sun doesn’t have a solid surface. But it does have a superheated atmosphere, made of solar material bound to the Sun by gravity and magnetic forces. As rising heat and pressure push that material away from the Sun, it reaches a point where gravity and magnetic fields are too weak to contain it.

That point, known as the Alfvén critical surface, marks the end of the solar atmosphere and beginning of the solar wind. Solar material with the energy to make it across that boundary becomes the solar wind, which drags the magnetic field of the Sun with it as it races across the solar system, to Earth and beyond. Importantly, beyond the Alfvén critical surface, the solar wind moves so fast that waves within the wind cannot ever travel fast enough to make it back to the Sun – severing their connection.

parker

 

Until now, researchers were unsure exactly where the Alfvén critical surface lay. Based on remote images of the corona, estimates had put it somewhere between 10 to 20 solar radii from the surface of the Sun – 4.3 to 8.6 million miles. Parker’s spiral trajectory brings it slowly closer to the Sun and during the last few passes, the spacecraft was consistently below 20 solar radii (91 percent of Earth’s distance from the Sun), putting it in the position to cross the boundary – if the estimates were correct.

On April 28, 2021, during its eighth flyby of the Sun, Parker Solar Probe encountered the specific magnetic and particle conditions at 18.8 solar radii (around 8.1 million miles) above the solar surface that told scientists it had crossed the Alfvén critical surface for the first time and finally entered the solar atmosphere.

“We were fully expecting that, sooner or later, we would encounter the corona for at least a short duration of time,” said Justin Kasper, lead author on a new  paper about the milestone published in Physical Review Letters, and deputy chief technology officer at BWX Technologies, Inc. and University of Michigan professor. “But it is very exciting that we’ve already reached it.”  

Comments

Popular posts from this blog

A.I

A.I. - we all know that the artificial intelligence come soon in the future , it is very useful for human life it's make human life so easier. Many scientists trying to make advance artificial intelligence like Jarvis ,  it's a fictional A.I. in iron man series it's very advanced A.I. which helps iron man in many wars and it also gives him all information ..... but many genius also said that if A.I. become so advance so it also harmful for human life ..... Elon Musk - He said that maybe A.I. will destroy human life that's why his company neuralink developing ultra high Bandwidth Brain this machine interference To connect Humans And computers.... but today's A.I. is not so advance.

Beautiful places in Philippines

 1.   Bohol / Chocolate Hills The Chocolate Hills are a geological formation in the Bohol province of the Philippines. There are at least 1,260 hills but there may be as many as 1,776 hills spread over an area of more than 50 square kilometres. They are covered in green grass that turns brown during the dry season It is  called  the  Chocolate Hills  not because it's made of  chocolate  but because of its color. In the rainy season, the grass blanketing the  hills  gives them a soft and lush appearance. While in the summer, the vegetation dies off and turns to a chocolatey brown hue, giving them their  name . The main viewing point of the  Chocolate Hills  is the government-owned  Chocolate Hills  Complex in Carmen,  Bohol , about 55 km (34 miles) from the regional capital Tagbilaran. 2.  Batad Batad is a village of fewer than 1500 people , situated among the Ifugao rice terraces. It is perhaps th...

what if humans don't have bones ?

  Explanation: Our  skeleton  is a very rigid structure of  bones   which provides support for our muscles, skin and its task is also to protect our vital organs. Whithout the  bone  we would be unable to do anything, beacuse our nerves, blood flow, lungs, organs would be blocked and squeezeed What would our body be like without bones ? Without bones , we  would  have  no  "structural frame" for  our  skeleton, be unable to move  our  skeleton, leave  our  internal organs poorly protected, lack blood and be short on calcium. Can we walk and stand without bones ? Every time we  walk , settle into a chair, or hug your child,  we 're using our  bones , muscles, and joints.  Without   these important body parts,  we  wouldn't be able to  stand ,  walk , run, or even sit. Is there is a person without bones ? When Janelly Martinez-Amador was born  without bone...