Skip to main content

Parker Solar Probe

 

The Parker Solar Probe (abbreviated PSP; previously Solar ProbeSolar Probe Plus or Solar Probe+) is a Nasa space probe  launched in 2018 with the mission of making observations of the outer corona  of the Sun. It will approach to within 9.86 solar radii (6.9 million km or 4.3 million miles) from the center of the Sun, and by 2025 will travel, at closest approach, as fast as 690,000 km/h (430,000 mph), or 0.064% the speed of light . 

The project was announced in the fiscal 2009 budget year. The cost of the project is US$1.5 billion. John Hopkins University applied physics laboratory  designed and built the spacecraft, which was launched on 12 August 2018.It became the first NASA spacecraft named after a living person, honoring nonagenarian  physicist Eugene Newman parker , professor emeritus at the University of Chicago

parker


A memory card containing the names of over 1.1 million people was mounted on a plaque and installed below the spacecraft's high-gain antenna on 18 May 2018. The card also contains photos of Parker and a copy of his 1958 scientific paper predicting important aspects of solar physics .

On 29 October 2018, at about 18:04 UTC, the spacecraft became the closest ever artificial object to the Sun. The previous record, 42.73 million kilometres (26.55 million miles) from the Sun's surface, was set by the Helios 2 spacecraft in April 1976.  As of its perihelion  21 November 2021, the Parker Solar Probe's closest approach is 8.5 million kilometres (5.3 million miles).This will be surpassed after each of the two remaining flybys of venus 


For the first time in history, a spacecraft has touched the Sun. NASA’s parker solar probe  has now flown through the Sun’s upper atmosphere – the corona – and sampled particles and magnetic fields there. 

The new milestone marks one major step for Parker Solar Probe and one giant leap for solar science. Just as landing on the Moon allowed scientists to understand how it was formed, touching the very stuff the Sun is made of will help scientists uncover critical information about our closest star and its influence on the solar system. 

"Parker Solar Probe “touching the Sun” is a monumental moment for solar science and a truly remarkable feat," said Thomas Zurbuchen, the associate administrator for the Science Mission Directorate at NASA Headquarters in Washington. "Not only does this milestone provide us with deeper insights into our Sun's evolution and its impacts on our solar system, but everything we learn about our own star also teaches us more about stars in the rest of the universe.”

parker


As it circles closer to the solar surface, Parker is making new discoveries that other spacecraft were too far away to see, including from within the solar wind – the flow of particles from the Sun that can influence us at Earth. In 2019, Parker discovered that magnetic zig-zag structures in the solar wind, called switchbacks, are plentiful close to the Sun. But how and where they form remained a mystery. Halving the distance to the Sun since then, Parker Solar Probe has now passed close enough to identify one place where they originate: the solar surface.

The first passage through the corona – and the promise of more flybys to come – will continue to provide data on phenomena that are impossible to study from afar.

“Flying so close to the Sun, Parker Solar Probe now senses conditions in the magnetically dominated layer of the solar atmosphere – the corona – that we never could before,” said Nour Raouafi, the Parker project scientist at the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland. “We see evidence of being in the corona in magnetic field data, solar wind data, and visually in images. We can actually see the spacecraft flying through coronal structures that can be observed during a total solar eclipse.”

Closer Than Ever Before 

Parker Solar Probe launched in 2018 to explore the mysteries of the Sun by traveling closer to it than any spacecraft before. Three years after launch and decades after first conception, Parker has finally arrived.

Unlike Earth, the Sun doesn’t have a solid surface. But it does have a superheated atmosphere, made of solar material bound to the Sun by gravity and magnetic forces. As rising heat and pressure push that material away from the Sun, it reaches a point where gravity and magnetic fields are too weak to contain it.

That point, known as the Alfvén critical surface, marks the end of the solar atmosphere and beginning of the solar wind. Solar material with the energy to make it across that boundary becomes the solar wind, which drags the magnetic field of the Sun with it as it races across the solar system, to Earth and beyond. Importantly, beyond the Alfvén critical surface, the solar wind moves so fast that waves within the wind cannot ever travel fast enough to make it back to the Sun – severing their connection.

parker

 

Until now, researchers were unsure exactly where the Alfvén critical surface lay. Based on remote images of the corona, estimates had put it somewhere between 10 to 20 solar radii from the surface of the Sun – 4.3 to 8.6 million miles. Parker’s spiral trajectory brings it slowly closer to the Sun and during the last few passes, the spacecraft was consistently below 20 solar radii (91 percent of Earth’s distance from the Sun), putting it in the position to cross the boundary – if the estimates were correct.

On April 28, 2021, during its eighth flyby of the Sun, Parker Solar Probe encountered the specific magnetic and particle conditions at 18.8 solar radii (around 8.1 million miles) above the solar surface that told scientists it had crossed the Alfvén critical surface for the first time and finally entered the solar atmosphere.

“We were fully expecting that, sooner or later, we would encounter the corona for at least a short duration of time,” said Justin Kasper, lead author on a new  paper about the milestone published in Physical Review Letters, and deputy chief technology officer at BWX Technologies, Inc. and University of Michigan professor. “But it is very exciting that we’ve already reached it.”  

Comments

Popular posts from this blog

what is secret of 369

  The number 3 serves as the only number that equals the sum  of  all preceding numbers (0 + 1 + 2 = 3). Also, when 3 is added to itself, the smallest perfect number ensues (6). And when 3 is squared, the result is the number that completes the single-digit numbers in the decimal system, better known as the number 9 why 369 is universe of key ? Nikola Tesla was obsessed with numbers, but especially 3, 6 and 9. He wanted the world to know the significance of the number 3 6 9, he claimed that these were extremely important numbers, but the question is why? What was that Nikola Tesla wanted the world to understand? How it became Nikola Tesla 3 6 9 theory? To understand that, we must first know about Mathematics. Why it is so different yet the same anywhere in the universe. Maths was and has been the most valued subject of all the time and the most powerful too. Two plus two will always be four everywhere in the universe. Possibly Nikola Tesla knew the power of the numbers 3 ...

Anthropic principle

  The   anthropic principle   is the principle that there is a restrictive lower bound on how statistically probable our observations of the universe are, given that we could only exist in the particular type of universe capable of developing and sustaining sentient life.   Proponents of the anthropic principle argue that it explains why this universe has the  age  and the  fundamental physical constants    necessary to accommodate conscious life, since if either had been different, we would not have been around to make observations. Anthropic reasoning is often used to deal with the notion that the universe seems to be  fine tuned . There are many different formulations of the anthropic principle. Philosopher Nick Bostrom  counts them at thirty, but the underlying principles can be divided into "weak" and "strong" forms, depending on the types of cosmological claims they entail. The  weak anthropic principle  ( ...

Kardashev scale

  The   Kardashev scale   is a method of measuring a  civilization ' s level of technological  advancement based on the amount of energy  it is able to use. The measure was proposed by   Soviet    astronomer   Nikolai    Kardashev    in 1964. The scale is hypothetical , and regards energy consumption on a cosmic  scale. Various extensions of the scale have since been proposed, including a wider range of power levels (types 0, IV through VI) and the use of metrics other than pure power. Categories  The Kardashev scale has three designated categories, these are: A  Type I civilization , also called a planetary civilization , can use and store all of the energy available on its planet.  A  Type II civilization , also called a stellar    civilization , can use and control energy at the scale of its planetary system. A  Type III ...