A simulation is a model that mimics the operation of an existing or proposed system, providing evidence for decision-making by being able to test different scenarios or process changes. This can be coupled with virtual reality technologies for a more immersive experience.
Simulations can be used to tune up performance, optimise a process, improve safety, testing theories, training staff and even for entertainment in video games! Scientifically modelling systems allows a user to gain an insight into the effects of different conditions and courses of action.
Simulation can also be used when the real system is inaccessible or too dangerous to assess or when a system is still in the design or theory stages.
Key to any simulation is the information that is used to build the simulation model and protocols for the verification and validation of models are still being researched and refined, particularly with regard to computer simulation.
Simulation works through the use of intuitive simulation software to create a visual mock-up of a process. This visual simulation should include details of timings, rules, resources and constraints, to accurately reflect the real-world process.
This can be applied to a range of scenarios, for example, you can model a supermarket and the likely behaviours of customers as they move around the shop as it becomes busier. This can inform decisions including staffing requirements, shop floor layout, and supply chain needs.
Another example would be a manufacturing environment where different parts of the line can be simulated to assess how their processes interact with those of others. This can provide an overview of how the entire system will perform in order to devise innovative methods to improve performance.
There are a range of advantages to be gained through the use of simulation, including:
1. Less Financial Risk
Simulation is less expensive than real life experimentation. The potential costs of testing theories of real world systems can include those associated with changing to an untested process, hiring staff or even buying new equipment. Simulation allows you to test theories and avoid costly mistakes in real life.
2. Exact Repeated Testing
A simulation allows you to test different theories and innovations time after time against the exact same circumstances. This means you can thoroughly test and compare different ideas without deviation.
3. Examine Long-Term Impacts
A simulation can be created to let you see into the future by accurately modelling the impact of years of use in just a few seconds. This lets you see both short and long-term impacts so you can confidently make informed investment decisions now that can provide benefits years into the future.
4. Gain Insights for Process Improvement
The benefits of simulation are not only realised at the end of a project. Improvements can be integrated throughout an entire process by testing different theories.
5. Assess Random Events
A simulation can also be used to assess random events such as an unexpected staff absence or supply chain issues.
6. Test Non-Standard Distributions
A simulation can take account of changing and non-standard distributions, rather than having to repeat only set parameters. For example, when simulating a supermarket you can input different types of customer who will move through the shop at different speeds. A young businesswoman who is picking up a sandwich will move through the shop differently from an old couple or a mother doing a weekly shop with two children in tow. By taking such changing parameters into account, a simulation can more accurately mimic the real world.
7. Encourages In-Depth Thinking
Even the process of designing a simulation and determining the different parameters can offer solutions. By thinking in-depth about a process or procedure it is possible to come up with solutions or innovations without even using the final simulation.
8. Improve Stakeholder Buy-In
A visual simulation can also help improve buy-in from partners, associates and stakeholders. You can visually demonstrate the results of any process changes and how they were achieved, improving engagement with interested parties or even enabling a simulation based sales pitch.
Limitations
While there are a great many advantages to using simulation, there are still some limitations when compared to other similar techniques and technologies, such as digital twin.
A digital twin expands on simulation to incorporate real time feedback and a flow of information between the virtual simulation and a real life asset or assets. The difference being that while a simulation is theoretical, a digital twin is actual.
Due to this, simulations have limitations when it comes to assessing actual real-world situations as they occur.
Simulation is used to evaluate the effect of process changes, new procedures and capital investment in equipment. Engineers can use simulation to assess the performance of an existing system or predict the performance of a planned system, comparing alternative solutions and designs.
Simulation is used as an alternative to testing theories and changes in the real world, which can be costly. Simulation can measure factors including system cycle times, throughput under different loads, resource utilisation, bottlenecks and choke points, storage needs, staffing requirements, effectiveness of scheduling and control systems.
Any system or process that has a flow of events can be simulated. As a general rule, if you can draw a flowchart of the process, you can simulate it. However, simulation is most effective when applied to processes or equipment that change over time, have variable factors or random inputs. For example, our supermarket from earlier has variable and random factors due to customer use times, requirements and stocks.
Using simulation to model complex and changeable dynamic systems can offer insights that are difficult to gain using other methods.
While simulation can be used to manage processes, procedures and assets, Swedish philosopher Nick Bostrom took the notion of simulation further in his 2003 paper, ‘Are You Living in a Computer Simulation?’ He argues that by adding artificial consciousness to simulations, you can blur the lines between reality and simulation, making it difficult to tell if you are living in reality or if you are living in a simulation. This simulation hypothesis argues that, should you become aware that your ‘reality’ was not actually ‘real,’ your memories could be edited by the simulation to once again make you blissfully unaware that you are not actually a real person in the real world!
Moving away from the realms of post-human simulation, let’s return to some ‘real world’ types of simulation…
Automotive
Simulation allows the characteristics of a real vehicle to be replicated in a virtual environment, so that the driver feels as if they are sitting in a real car. Different scenarios can be mimicked so that the driver has a fully immersive experience. These type of simulators can help train both new and experienced drivers, offering a route to teach driving skills that can reduce maintenance and fuel costs and ensure the safety of the drivers themselves.
Biomechanics
Simulation can be applied to biomechanics to create models of human or animal anatomical structures in order to study their function and design medical treatments and devices. Biomechanics simulation can also be used to study sports performance, simulate surgical procedures, and assess joint loads. An additional example is neuromechanical simulation that unites neural network simulation with biomechanics to test hypotheses in a virtual environment.
Comments
Post a Comment